AI Deploy - Tutoriel - Créer et déployer une application de Speech to Text (EN)

Comment créer et déployer une application de Speech to Text / Transcription audio

Last updated 6th December, 2022.

AI Deploy is in beta. During the beta-testing phase, the infrastructure’s availability and data longevity are not guaranteed. Please do not use this service for applications that are in production, as this phase is not complete.

AI Deploy is covered by OVHcloud Public Cloud Special Conditions.



The purpose of this documentation is to Deploy the Speech to Text Application we have realised in our blog article using Streamlit and pre-trained models.

Deploying your app will allow you to benefit from very powerful resources which will make the speech to text application extremely fast. It can also be easily shared, unlike a local application.

Here, the use case is English Speech Recognition, but you can choose another model as explained in our blog article. Some models work with Chinese, French, German, Japanese, Russian, etc.

Overview of the Speech to text app:



To deploy your app, you need:


You are going to follow different steps to deploy your Streamlit Speech to Text application:

  • Write & Install the libraries and packages in our environment so that our application can work.
  • Write the Dockerfile that contains all the commands to launch our speech to text app.
  • Build the Docker image from the Dockerfile
  • (Optional) - Import the models and save them locally in an Object Storage (volume) to speed up the initialization of the app.
  • Deploy your app.

If you have cloned the GitHub repository, you will not need to rewrite the files (requirements.txt, packages.txt and Dockerfile) since you already have them. In this case, you can go directly to the "Build the Docker image" step, even if it is better to understand the global operation.

Write the requirements.txt file for the application

The requirements.txt file will allow us to write all the modules needed by our application. This file will be useful for the Dockerfile. Put this file (and the next ones) in the same directory as your python scripts.


Write the packages.txt file

Then, you need to write the packages.txt file, which contains general system packages:


Write the Dockerfile for the application

A Dockerfile is a text document that contains all the commands a user could call on the command line to build an image.

This file should start with the FROM instruction, indicating the parent image to use. In our case, we choose to start from the official python:3.8 image:

FROM python:3.8

We recommend that you do not downgrade the version of python. Indeed, according to's documentation, only python 3.8+ is officially supported for the moment.

Then, define the home directory and add all your files (python scripts, requirements.txt, packages.txt, and the Dockerfile) to it thanks to the following commands:

WORKDIR /workspace
ADD . /workspace

With AI Deploy, workspace will be your home directory.

We can now install our needed system packages. To do this, use apt-get, which is a command-line tool which helps in handling packages:

RUN apt-get update
RUN xargs -a packages.txt apt-get install --yes

Use a pip install ... command to install our needed python modules that are in the requirements.txt file:

RUN pip install -r requirements.txt

Once your environment is set up, define your default launching command to start the application:

CMD [ "streamlit" , "run" , "/workspace/", "--server.address=" ]

Finally, create a data folder which will temporarily store users' audio files until they are transcribed. Then, give correct access rights to the OVHcloud user (42420:42420):

RUN mkdir /data ; chown -R 42420:42420 /workspace /data
ENV HOME=/workspace

Build the Docker image from the Dockerfile

Before continuing, make sure you are in the directory containing the application files (requirements.txt, packages.txt, Dockerfile, python files).

Once you are in it, launch the following command to build your application image:

docker build . -t streamlit_app:latest

The dot . argument indicates that your build context (place of the Dockerfile and other needed files) is the current directory.

The -t argument allows you to choose the identifier to give to your image. Usually image identifiers are composed of a name and a version tag <name>:<version>. For this example, we choose streamlit_app:latest.

Push the image into the shared registry

The shared registry of AI Deploy should only be used for testing purposes. Please consider attaching your own Docker registry. More information about this can be found here.

Find the address of your shared registry by launching this command:

ovhai registry list

Log in on your shared registry with your usual OpenStack credentials:

docker login -u <user> -p <password> <shared-registry-address>

Tag the compiled image and push it into your shared registry:

docker tag streamlit_app:latest <shared-registry-address>/streamlit_app:latest
docker push <shared-registry-address>/streamlit_app:latest

Import the models and save them locally (Optional)

As we explained in the blog article, you will considerably reduce the initialization time of the app if you download the models and store them in a local folder. This will allow you not to have to download them again every time you relaunch the application.

To do this, we will use AI Training. This will allow us to launch a python script from GitHub that will download the models and store them in an OVHcloud volume named speech_to_text_app_models. When the models will be downloaded and added to this volume, the status of the job will automatically switch from Running to Done and the job will be immediately stopped. This operation should be quite fast.

Unfortunately, the diarization model can't be saved anymore since v2. Make sure you have replaced the use_auth_token="ACCESS TOKEN GOES HERE" code line in the file by your own token so it can download the model. If the model fails to be downloaded during the initialization of the app, the diarization option will be disabled.

To launch this AI Training job and download the models, use the following OVHcloud's CLI command:

ovhai job run <shared-registry-address>/streamlit_app:latest \
    --cpu 12 \
    --volume speech_to_text_app_models@GRA/:/workspace/speech_to_text_app_models:RW \
    --volume \
    -- bash -c 'python /workspace/github_repo/apps/streamlit/speech-to-text/'

streamlit_app:latest corresponds to the name of your Docker image.

--volume allows you to specify what volume you want to add to your job. As mentioned, we add the volume speech_to_text_app_models and we put it in RW (read and write) mode since we want to add our models to this volume. If you do not have this volume in your Object Storage list, do not worry, it will be created automatically. As you can see, the --volume parameter also allows you to get files from a GitHub repository, which in our case contains the script to download the models.

--bash allows you to provide commands through which you install the librairies mentioned in your requirements.txt file, and run the python script.

When you run this command, an Info url will appear. Opening it will allow you to track the status of the job. Once the GitHub repository is recovered, the python script will be launched and the job status will switch to Running. Then, you just have to wait for the job to end.

We advise you to turn on the auto-refresh option (Running status automatically disables it). This will allow you to see when the job will end (job status switches to Done). Otherwise, you can refresh the page manually.

Once the models have been uploaded and the status is Done, you can continue.

Launch the app on AI Deploy

If you followed the optional part Import the models and save them locally, you can load the volume where your models are stored with the --volume parameter. This time, we put this volume in read-only (RO) mode because we only need to have an access to the models so we can use them. We don't need to write or delete anything in this Object Storage container.

Otherwise, you can remove the --volume line, since it will not bring anything to your app.

The following command starts a new app running your Streamlit application:

ovhai app run \
      --default-http-port 8501 \
      --gpu 1 \
      --volume speech_to_text_app_models@GRA/:/workspace/models:RO \

default-http-port 8501 indicates that the port to reach on the app URL is the 8501.

--gpu 1 indicates that we request 1 GPU for our app.

If you want your app to be accessible without the need to authenticate, specify it as follows:

Consider adding the --unsecure-http attribute if you want your application to be reachable without any authentication.


Please send us your questions, feedback and suggestions to improve the service:

Cette documentation vous a-t-elle été utile ?

N’hésitez pas à nous proposer des suggestions d’amélioration afin de faire évoluer cette documentation.

Images, contenu, structure… N’hésitez pas à nous dire pourquoi afin de la faire évoluer ensemble !

Vos demandes d’assistance ne seront pas traitées par ce formulaire. Pour cela, utilisez le formulaire "Créer un ticket" .

Merci beaucoup pour votre aide ! Vos retours seront étudiés au plus vite par nos équipes..

Ces guides pourraient également vous intéresser...

OVHcloud Community

Accedez à votre espace communautaire. Posez des questions, recherchez des informations, publiez du contenu et interagissez avec d’autres membres d'OVHcloud Community.

Echanger sur OVHcloud Community

Conformément à la Directive 2006/112/CE modifiée, à partir du 01/01/2015, les prix TTC sont susceptibles de varier selon le pays de résidence du client
(par défaut les prix TTC affichés incluent la TVA française en vigueur).