CLI - Use your data in a notebook
Learn how to access data from your Object Storage in your Notebook
Learn how to access data from your Object Storage in your Notebook
Last updated 13th April, 2022.
This guide shows how to access Object Storage data from your notebooks.
ovhai
CLI (how to install ovhai CLI)First, we need to push some data to the Object Storage before accessing it from the notebook.
Assuming a file named my-dataset.zip
exists in your current working directory, you can use the following command
to create a data container named my-dataset
in the GRA region that will contain your my-dataset.zip
file.
$ ovhai data upload GRA my-dataset my-dataset.zip
This file can now be accessed from your notebooks, either with read-only or read-write permissions.
In order to access your dataset, you can use the --volume
option.
$ ovhai notebook run tensorflow jupyterlab --volume my-dataset@GRA:/workspace/datasets:ro
This command can be read as "Load the container my-dataset
from the GRA region, in the /workspace/datasets directory,
with ro
(read-only) permissions".
Wait a few seconds for the notebook to start, then you should see its URL in the output that you can access from your browser. You can read the Getting started page to know how to find this URL.
You should get a page like this, showing your dataset in the file explorer:
You will not be able to modify the dataset from this notebook because you loaded it with read-only permissions.
Read-only permissions are to ensure you don't modify your data by mistake. If you want to modify data from your notebooks, to store a trained neural network for example, you can use the read-write permission instead.
Similarly to the read-only mode, you can use the --volume
option to load data with read-write permission.
The only difference is that you specify rw
instead of ro
in the command:
$ ovhai notebook run tensorflow jupyterlab --volume my-neural-networks@GRA:/workspace/neural-networks:rw
Once you have some data that you want to save (a trained neural network in this example), you can simply write it
to the /workspace/neural-networks
folder.
This folder will be uploaded to your Object Storage when you stop your notebook.
As long as your notebook is in the STOPPING
state, this means that the upload is still in progress. Once the state
changes to STOPPED
, it means all the data were uploaded to your Object Storage.
With the RW
permission, you can add or modify data but you cannot permanently delete it from your Object Storage.
If you want to add, modify or delete data, connect your volume with Read-write-delete specifying RWD
instead of RW
.
If Python code, notebooks or other files are available on a public GitHub repository, you can attach them to your notebook with the --volume
option.
To be able to edit it and make changes easily, use the read-write permission (shorten by: rw
).
The command is as follows:
$ ovhai notebook run tensorflow jupyterlab --volume https://github.com/ovh/ai-training-examples.git:/workspace/git-hub-repository:rw
To make your command valid, don't forget to add a .git
at the end of the GitHub repository URL.
In many cases you need at least one volume for your dataset, and another to store your results. You can load as many
volumes as you want by chaining the --volume
options:
$ ovhai notebook run tensorflow jupyterlab
--volume my-dataset@GRA:/workspace/datasets:ro \
--volume my-neural-networks@GRA:/workspace/neural-networks:rw \
--volume https://github.com/ovh/ai-training-examples.git:/workspace/git-hub-repository:rw
In this case, we loaded my-dataset
in read-only, and my-neural-networks
and the GitHub repository in read-write mode.
When loading large files from the Object Storage, it can take some time to download to your notebooks. In these cases, you can cache the volumes so that it does not need to be downloaded again when you start new notebooks that use the same data.
To do so, you can append :cache
after the permissions when specifying volumes:
$ ovhai notebook run tensorflow jupyterlab --volume my-dataset@GRA:/workspace/datasets:ro:cache
Cached volumes will be deleted at least 72 hours after the last notebook using it has stopped. Note that the cache is shared with all users in your project. The main consequence you need to be careful about is the fact that if someone else modifies the data in your cached volume, you will also see the modifications on your side.
It's possible to update the volumes configuration of a notebook with the patch
command.
It can be convenient if you need afterward a new object storage and don't want to recreate the whole notebook.
To do so, use the patch
command with the --volume
option:
$ ovhai notebook patch <notebook ID> -v my-dataset@GRA:/workspace/datasets:rw
This is the same option as the run
command above. You can choose to mount the volume in read-only or read & write mode and mount multiple volumes.
Please send us your questions, feedback and suggestions to improve the service:
Zachęcamy do przesyłania sugestii, które pomogą nam ulepszyć naszą dokumentację.
Obrazy, zawartość, struktura - podziel się swoim pomysłem, my dołożymy wszelkich starań, aby wprowadzić ulepszenia.
Zgłoszenie przesłane za pomocą tego formularza nie zostanie obsłużone. Skorzystaj z formularza "Utwórz zgłoszenie" .
Dziękujemy. Twoja opinia jest dla nas bardzo cenna.
Dostęp do OVHcloud Community Przesyłaj pytania, zdobywaj informacje, publikuj treści i kontaktuj się z innymi użytkownikami OVHcloud Community.
Porozmawiaj ze społecznością OVHcloud