AI Notebooks - Tutorial - Use Speech-to-Text powers on audio and video
How to convert Speech to Text using AI Notebooks
How to convert Speech to Text using AI Notebooks
Last updated 1st September, 2022.
The purpose of this tutorial is to show you how it is possible to convert speech into text and generate transcripts thanks to AI Notebooks.
In Natural Language Processing (NLP), speech-to-text is a Deep Learning task that enables machines to understand and read human language. There are many applications: transcription, summaries, diarization, subtitle generation, ...
This documentation allows you to test and launch 3 AI Notebooks allowing you to get to grips with and use various speech-to-text features.
The following instructions correspond to each of these 3 tutorials.
You can launch your notebook from the OVHcloud Control Panel or via the ovhai CLI.
Direct link to the full code can be found here.
To launch your notebook from the OVHcloud Control Panel, refer to the following steps.
Choose the Jupyterlab
code editor.
In this tutorial, the Miniconda
framework is used.
With Miniconda, you will be able to set up your environment by installing the Python libraries you need.
You can choose the conda
version.
The default version of conda is functional for this tutorial: conda-py39-cuda11.2-v22-4
.
GPU is recommended since audio transcription is resource intensive.
Here, using 1 GPU
is sufficient.
If you want to launch it with the CLI, choose the jupyterlab
editor and the conda
framework.
To access the different versions of conda
available, run the following command.
ovhai capabilities framework list -o yaml
This tutorial has been launched with the conda-py39-cuda11.2-v22-4
version.
If you do not specify a version, your notebook starts with the default version of conda
.
Choose the number of CPUs/GPUs (<nb-cpus>
or <nb-gpus>
) to use in your notebook and use the following command.
Here we recommend using 1 GPU
.
ovhai notebook run conda jupyterlab \
--name <notebook-name> \
--framework-version <conda-version> \
--gpu <nb-gpus>
You can then reach your notebook’s URL once the notebook is running.
Once the repository has been cloned, find your notebook by following this path: ai-training-examples
> notebooks
> natural-language-processing
> speech-to-text
.
basics
folder. A preview of this notebook can be found on GitHub here.advanced
folder. A preview of this notebook can be found on GitHub here.compare-models
, contains the third tutorial. A preview of this notebook can be found on GitHub here.Please send us your questions, feedback and suggestions to improve the service:
Zachęcamy do przesyłania sugestii, które pomogą nam ulepszyć naszą dokumentację.
Obrazy, zawartość, struktura - podziel się swoim pomysłem, my dołożymy wszelkich starań, aby wprowadzić ulepszenia.
Zgłoszenie przesłane za pomocą tego formularza nie zostanie obsłużone. Skorzystaj z formularza "Utwórz zgłoszenie" .
Dziękujemy. Twoja opinia jest dla nas bardzo cenna.
Dostęp do OVHcloud Community Przesyłaj pytania, zdobywaj informacje, publikuj treści i kontaktuj się z innymi użytkownikami OVHcloud Community.
Porozmawiaj ze społecznością OVHcloud