AI Training - Tutorial - Run your first Tensorflow code with GPUs
Example on how to use Tensorflow library with GPUs
Example on how to use Tensorflow library with GPUs
Last updated 1st September, 2022.
This tutorial covers the process of starting a new Jupyter notebook and experiment examples on using GPUs with it.
If you want to launch it from the OVHcloud Control Panel, just follow this guide and select the Tensorflow 2
docker image.
If you want to launch it with the CLI
, just choose the number of GPUs (<nb-gpus>
) to use on jour job and use the following command:
ovhai job run ovhcom/ai-training-tensorflow:2.3.0 --gpu <nb-gpus>
You can then reach your notebook's URL once the job is Running
.
The GitHub repository containing all examples for OVHcloud AI TRAINING
is available here.
Inside your notebook, open a new Terminal
tab by clicking File
> New
> Terminal
.
Run the following command in the notebook's terminal to clone the repository:
git clone https://github.com/ovh/ai-training-examples.git
We currently provide the following tutorials for Tensorflow as ipython notebooks
:
notebooks/tensorflow/tuto/basic_gpu_cpu_benchmark.ipynb
notebooks/tensorflow/tuto/multiple_gpus_computation.ipynb.ipynb
The aim of this tutorial is to do a very simple tensor computation with the Tensorflow
library and to compare performances of running it over CPU versus GPU.
A preview of this notebook can be found on GitHub here.
The aim of this tutorial is to do a very simple tensor computation with the Tensorflow
library and to compare performances of running it over CPU versus GPU.
A preview of this notebook can be found on GitHub here.
Please send us your questions, feedback and suggestions to improve the service:
Não hesite em propor-nos sugestões de melhoria para fazer evoluir este manual.
Imagens, conteúdo, estrutura... Não hesite em dizer-nos porquê para evoluirmos em conjunto!
Os seus pedidos de assistência não serão tratados através deste formulário. Para isso, utilize o formulário "Criar um ticket" .
Obrigado. A sua mensagem foi recebida com sucesso.
Aceda ao seu espaço comunitário. Coloque as suas questões, procure informações e interaja com outros membros do OVHcloud Community.
Discuss with the OVHcloud community